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The v-Poincaré quantum group from quantum group
contraction

Philippe Zaugg .

Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139,
USA

Received 14 Qctober 1994, in final form 15 February 1995
This paper is dedicated to the mernory of my friend Ansgar Schnizer

Absiract. We propose a contraction of the de Sitter quantum growp leading to a Poincaré
quantum group in any dimensions. The method relies on the coaction of the de Sitter guantum
group on a non-commutative space, and the deformation patameter ¢ is sent to one. The
bicrossproduct structure of this y-Poincaré quantum group is exhibited and shown to be dual to
the one of the «-Poincaré Hopf algebra, at least in two dimensions.

1. Introduction

In the realm of Hopf algebras, several propositions for a deformed enveloping algebra of
the D-dimensional Poincaré algebra U7, (P(D)}} have been made in the recent past [1-4].
In these approaches, the basic tool is a contraction of the deformed enveloping algebra
U, (so(D--1}), in which the deformation parameter g is simultaneously sent to its classical
value one. One particular feature of these deformations is that they are minimal, in the sense
that the commutation relations are only slightly modified, but not too minimal since they
are no longer cocommutative. Furthermore, these deformations are physically interesting
since they involve a dimensional parameter x which sets a scale in the theory that could in
principle be determined by some measurement.

In two dimensions, another contraction of Uy (su(2)), where g is left unaffected, leads
to a different deformation of the Poincaré enveloping algebra [5]. This Hopf algebra turns
out to be dual to Woronowicz’s construction of a Poincaré quantum group E,(2) [6].

Regarding the Poincaré quantum group, a construction has been made in [7], similar
to the classical one where the Poincaré group is the inhomogenecus group associated with
the Lorentz group. This procedure is based on a deformation of the Lorentz group, and
requires the introduction of dilatations. 1t was later shown to be a semidirect (co)-product
based on a braided quantum group structure [8]. In the present y-Poincaré quantum group,
the Lorentz subgroup is classical and there are no dilatations,

Here we are mainly interested in the dual of the #-Poincaré algebra. Mathematically,
these Hopf algebras are deformations based on non-semisimple Lie algebras. When the
Lie algebra is simple, there is a natural dual Hopf algebra, conventionally known as the
algebra of functions on the quantum group, and the R-matrix provides the elegant link
between these dual structures [9]. At the present time, there is no known R-matrix for the
deformed Poincaré algebra (except in dimension three [1]), therefore the investigation of
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2590 P Zaugg

the dual along this line is impossible. A potentially fruitful approach is to use the fact that
the «-Poincaré algebra is an example of a bicrossproduct of Hopf algebras, as was recently
shown in [10].

Possible dual structures have been proposed by different authors, principally obtained
by the gquantization of the Poisson bracket on the algebra of functions on the classical
group [3,4,11].

In this paper, we first extend a previous construction [12], initially developed for a two-
dimensional spacetime, in which a Poincaré quantum group is obtained by a contraction of
the corresponding de Sitter quantum group (sections 2 and 3). The deformation parameter
g is sent to one as well, and similarly a dimensional parameter y enters the final Hopf
algebra. From a duality point of view, this is a natural starting point since the de Sitter
quantumn group and the deformed enveloping de Sitter algebra are known to be dual.

Next, by unravelling the y-Poincaré quantum group bicrossproduct structure, we provide
a strong hint that this it is actually dual to the x-Poincaré algebra (sections 4 and 5). Finally
in two dimensions, we are able to show that these bicrossproducts are piecisely dual to
each other (section 6). This provides an alternative duality proof to the one in {13]. Two
appendices give some technical details used in the main text.

2. The Hopf algebra Fun(SO4,(N, R))

The complex orthogonal quantum group is defined in [9] as the non-commutative algebra
with unity and generators T = (#y),i,j = 1,..., N, subject to the relation R, 1T, =
T2 TVR;, where the R-matrix is

N N N N
=g ZBI:‘@E:‘:‘ + Z e;;®e;; + q“l Zei’i'®eii +@—ghH Ze;j®3j¢'
£l Ljsitfd i P>
—1 a J— odd
— @ -7 g" Pe®ery + enp mn@eun w1 @.1)
i>j

dd
Here °+ means that the term is present only for odd N. We use the notation i’ = N+ 1 —1i,
the integer part M = [¥71] and the numbers p;, for 1 i < M,

N o
pr=——1i Pir = —p; o+ =0 (for odd N).

The orthogonality conditions are
N
TCTICl'=CcT7C'T =1 with C=Y g"en.
—

The complete Hopf algebra structure is specified by the homomorphisims
ATy =TT eT) =1 S(T)=CricL. 2.2)

The quantum N-dimensional complex space O;;’ (C) is defined as the non-commutative
algebra with unity generated by the N elements x; subject to the relation
£—g+qgr+q"

g1+ qi-¥

FRIx@x)=0  with  f@O)= (2.3)
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and R, = PR, is the permuted R-matrix. There is a coaction of the quantum group on the
quantum space given by

8(x) =T®x _ @249

which preserves the quadratic form x7 Cx.
The quantum group real form we are considering here is specified by the anti-involution

T = pc’T(c™Hf p™! (2.5)

where D = diag(ey, ..., ey), with e,?‘ =l,ep=¢fori=1,...,N,and¢; =1fori =i
" These ¢’s represent in a way the signature of the quadratic form in the quantum space, and
characterize the real quantum algebra Fun(SO4(N, R; ¢)). Similarly the quantum space is
turned to a quantum real space O, (R) with the help of the anti-involution x* = DC7x.

For our gecmetric construction, it is more convenient to choose a real set of generators
for the quantum space, z; = Mj;x; = z,*, with the matrix and its inverse

N
E ;e + Biew;)

f
2.6}
1 N
M = 7 ;(Vieii + &;ep;)
where
(“1’ ey O«’M) = (1’ “‘,‘ » 1) (Gfo, e 1aN) = (_iqupMa ey _iélqpl)
1 1

Bi=iw; y=— - G=-  forj#j

il il K aj 4 ﬁjf

1

ot = P =yug =g =

Accordingly, we take new real gemerators V = (v;) = M TM™! for the algebra
Fun(§0,4(N,R)), which satisfy slightly different orthogenality conditions

vevli =€ with C=MCMT

2.7
vIicv=C  with C=M1TcM\
The comultiplication and counit are similar to (2.2), but the antipode is now
S(vy=CvTC. (2.3)
In this real basis, the quantum space relations (2.3) become
%i%j — qZ;Zi — %y + gy = 2wy — 423 + uzp — q210%) i<ji<i,j<j
Tz — 2Ty — 4% + quizy = —i(2pz — quzy + zi20 — 42i7)) i<ji>ij<j
22 — gz + 2izy — 9zpz = —WLizy — 944 — Zrzp + 92par) i<ji<ij>j
k=i M—i
€lzi 2l = igz—;} k___,zﬂi:,.l (1 _;QZ) Ek(Zk + zkr)o-i-“ q—_:ll (1 -Zqz) ziﬁ_{ _

2.9)
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and the quadratic form is diagonal

~ 14V E 14 0d1+4%V (1+42\"
TR, 2
7 Cz= 1447 ,;?:1 2 ) Gk(Zk -+ zk,) + 142 2 ) Linga - 210
In this equation, the meaning of D = diag(é;, ..., €x) as the signature of metric is clear,

particularly in the lirait g — 1.

3. Contraction

We now apply the contraction procedure Jeading to the definition of the y-Poincaré quantum
group and the quantum spacetime on which it coacts. In the classical contraction scheme,
the (N — 1)-dimensional spacetime is identified with a neighbourhood of a particular point
on the N — 1 sphere (or hyperbola if the signature is Minkowskian), in the limit of infinite
radius. Here we generalize this geometric point of view to non-commutative spaces. The
two-dimensional situation was developed in detail in [12], both at the classical and quantum
level. In particular, the geometric meaning of the different steps involved was made clear.

In the quantum space ON (R), we consider a subspace of dimension N — 1 characterized
by the condition zTCz = constant (this corresponds to the de Sitter sphere in the classical
Euclidean contraction). This subspace is invariant under the quantum group coaction
because the quadratic form (2.10) is invariant. On this subspace, we select a particular
point of coordinates (z;) = (R, 0, ..., 0) around which an expansion in R is performed. In
the limit R — oo, this (N —I)-dimensional subspace will give rise to the quantum spacetime,
and by a proper limit, the coaction (2.4) will induce a coaction of the y -Poincaré quantum
group.

We consider elements of O;’ (IR} living on the subspace

7Cz = RE. ‘ (3.1

We absorb an irrelevant factor in R? = 2R?*/1 + ¢g>~¥. The factor ¢; is compulsory if we
want to keep all coordinates real when R — co, as can be easily seen from (2.10) (recall
also that in the contraction limit we choosed, z; — c0). The contraction amounts to take
simultaneously R — co and g — 1 by letting g = exp(y/R), with y a finite constant.

In (3.1) we choose to expand z; as a series in R {our convention for indices is that

L Lk=1,...,N, whereas ¢, b,c=2,..., N)
— — =3
2 =R ( ~ 523 geaza +O(R )) (3.2)

Inserting this expansion in the relations (2.9}, the limit R — oo is well defined because all
the divergent terms cancel, and we are left with the unique constraint

[z, 28] = —iyza. (3.3)

We therefore define the quantum spacetime as the algebra generated by the z,, subject to the
above constraint (3.3).
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Next, we rewrite the generators of Fun(S0,(N,R)) as an expansion in the contraction
parameter R

3.4)

3|

and from simple requirements we will collect enough informations on the vj; to enable us
to derive all the necessary relations characterizing the algebra Fun(P, (N - 1)). First, we
require that under the coaction § of Fun{SQ;(N,R)), the elements z, remain of order 1 in
the limit R — o2. Since

3z =1 @21+ v ®2p

and z; is of order R, this is only possible if 7-’.:1 = (). Mext we apply & on both sides of (3.2)
to get

2 -3
—(U11 Qn+ra®z) =101~ sz Zeaé'(za)-[-O(R ) (3.5)

a=2

which implies that ¥, = 1 and v}, ® 1+ v}, ®z, = 0, since 5(z2) are finite by constructmn
As the elements 1 and z, are linearly mdependent, we also conclude that v,a = 0 and
vl = 0.

Collecting all this, we can take the R — oo limit in §(z) = V ®z, and dividing z; by
R, this yields

3(1) = 11
(3.6)
8(z) = v}, @1+ v2,®2z;.

From this form of the coaction, we see that v}, play the role of translations and vJ), the
role of Lorentz transformations. It is then natural to take the elements 1, u,p = pgb and
ug = v}, as the generators of Fun(P,(N — 1)}, the algebra of functions on the quantum
Poincaré group P, (N — 1) (or, in short, the y-Poincaré quantum group).

Now that we selected the generators of the algebra, we should determine the constraints
imposed on them by the previous quantum group structure. First we apply the constraints
that derive from the contraction of the two orthogonality relations (2.7). At zeroth order in
1/R one gets respectively

0 0
vabEbUcb =€, 3“-

(3.7)
v et = €abuc
and at first order, the relations are
(vl + vievy + yeheaipvl +ivvhaovi)er = vabime: +ivaner .
(Ui]jefv?k + vg"efvilk - }’U?jfiﬁipivgc - il/v?jfipivgk)ejrc = —y€bipie; — iyépiew .
where ; = 1ifi < M and 6; = —1 if i > M, These constraints will be useful when

computing the antipode and the commutation relations.
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The next task is to determine the commutation relations among the generators that
derive from the contraction of the constraint R, ViVo = KL, R,. For that purpose, one
need to expand that expression up to order R~ (in order to include the relations of v;,_ with
vgl). Higher-order terms (R™", n 2> 3) will always contain elements v} of that order which
by definition do not belong to the quantum Poincaré algebra, and thus do not yield new
constraints on our set of generators. Performing the expansion, we get for the first three

terms

(VORVOI=0 (3.92)

[(VOQY @] 4 [vORyD] = [RV v@ g v (3.95)
[V(l)@vtl)] - _,[V(U)@V(Z}] - [Vm@V(O)] - {'R(Z), vO & V(ﬂ)]

~ROWVEOVE + vOuD) + (VD + Py OR®, (3.9¢)

We used the short-hand notation X = Y, X R~" for all the matrices, and the tensored
commutator should be understood as [V® ¢ V&, 1y = [V, v71.

Owing to the particular structure of ¥ obtained in (3.4)—(3.6), equation (3.94) implies
in components

(b, tea] = [U3;, 1541 = 0. (3.10)

From equation (3.9b), we extract the commutation relation between the order zero and
one generators of interest, ¥2; and vl,, namely we consider the component (ac, 14) of that
equation. The necessary elements of the R-matrix are computed in appendix A, and one
gets the commutation relations

[, ica] = [vgl;p Ugd] = iy ((una — Snad€i€adac + (ey — 8cy)iaa) - (3.11)

From equation (3.9¢), we determine the commutation relation between the order one
generators, vl,, considering the component (ab, 11). This requires the knowledge of some
particular matrix elements of R, up to order R~2, which can be found in appendix A. After
some tedious but straightforward algebra, the result is

[a, 5] = (031, V5] = iy (Swatts ~ Snptta)- (3.12)

The other components of (3.9) are not relevant since they involves elements which are not
part of the quantum Poincaré algebra as defined after (3.6).

The rest of the Hopf algebra structure is obtained by contracting the comultiplication
A(V) = V ® V, which yields

AUap) = tac @ Hep Ag) =1, @ 1+ s Qup (3.13)

the counit e(V) =1

€(uap) = 8up &(us) =0 (3.14)
and the antipode (2.8)
S(uap) = €a€pitpa no sum on a, b
(3.15)

Sua) = —€xup,Eptty, no sum on 4.
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One can readily check that the commutation relations (3.10)—(3.12) satisfy the Jacobi
identity and as they originate from a contraction of Fun(S0O,(N,R)), it is natural to take
them as the definition of the y-Poincaré quantum group Fun(P,(N —1)). Furthermore
this definition is consistent with previous ones {3,4, 11], obtained from quantization of a
classical Poisson structure on the Poincaré group. It is remarkable that this deformation is
linear in the deformation parameter . Here this linear dependence is a direct consequence
of the contraction, where only the lowest order terms in the expansions are kept.

Looking closer at (3.7) and (3.10), one sees that U = (u,) actually describes an ordinary
orthogonal matrix (with commuting entries) which preserves the metric 5, = €1€,84.,
i.e. equations (3.7) become UTnU = 5. The introduction of the factor ; is suggested
by (3.1),(3.2) and is natural when considering (3.11). In particular, becanse of the
constraint (Z.5) imposing ¢; = €y, in our consiruction the time direction has always a
positive signature nyy = 1. One should mention that for odd-dimensional spacetime, this
also forces the metric to have an odd/even number of plus/minus signs.

4. The ~-Poincaré quantum group as a bicrossproduct of algebra

1t turns out that the Hopf algebra Fun(P, (N ~ 1)) just constructed by contraction can
also be obtained as a bicrossproduct of two Hopf algebras, whose general theory was
developed in {14]. Essentially, a bicrossproduct is 2 way to build a non-commutative
non-cocommutative Hopf algebra from two Hopf algebras, using their respective (co)-
actions on one another, provided some conditions are satisfied. Appendix B summarizes
this construction.

In our case, the two algebras that form the bicrossproduct are the algebra of functions on
the (classical) orthogonal group Furn(SO(N — 1,IR)) and a non-commutative deformation
of the algebra of translations T. The algebra Fun(SO(N —1, R)) = A is generated as usual
by the commuting elements U = (Wap) (the indices a,b, ¢, ..., take their N — 1 values
from 2 to N, in order to match with the notations in the previcus sections) and has the Hopf
algebra structure

A =TeU c@ =1
(4.1)
SO = n“‘ﬁrn Urn_ﬁ =7.

Recall that n = diag(e;€y, ..., €1€x) and represents the metric in RY~,
The translation algebra T = H is generated by the elements %, with the following
refations:
[#a, Wp] = iy (Bants — SpnTa) e(ty) =0
(4.2)
A,) =u,®1+ 187, - S(g) = —Ha.

For the bicrossproduct, we must define the actions and coactions. Fun(S0) is a right
T-module algebra with the structure map ¢« : Fun{(SO)®T — Fun(SO) given by

(R ®U.) = Uyp<iic = 1y ((Unp — Sxp)ac + (Uan = Sun)Ues) . 4.3)

We deliberately define an action that resembles (3.11) since, from the comultiplications in
(4.1),(4.2) and the product (B.1) in the bicrossproduct, we see that this action eventually
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determines the commutator in X of elements of Fun(S0) and T. One then verifies that it
is a consistent action. ’ R

T is a left Fun(SO)-comodule coalgebra specified by the coaction g : T —
Fun(SOY®T

B#s) = Tap@p. 44)

Here again, this expression is inspired by (3.13), since from (B.2) we see that £ is the key
ingredient for defining the comultiplication in K of an element of 7. One can check that
conditions (B.3) are satisfied by the structure maps (4.3), (4.4), therefore K = T'rAFun(S0)
is 2 Hopf algebra. If in K we denote the elements

Uap = 1@z He = U @]

and we apply the definitions for the product of appendix B, we get the following relations
in X:

[#ap, tea] =0
[0 , Ucd] =iy ((und — Na)Nac + (ten — 8enditaa) (4.5)
fra . up 1= 1y Onattp — Snplta)

and for the comultiplication, counit and antipode
Allap) = thee @ Uy Aug) =ty @1+ 115@up
(uap) = dap €a) =0 (4.6)
S(%ap) = Nacltactay S(42) = —TNablicpledlta.

This shows that the bicrossproduct K is in fact the y-Poincaré quantum group built in the
previous section, Fun(P,(N — 1)) = T4 Fun(SO(N — 1, R)).

Ultimately we would like to show that this y-Poincaré quantum group is the Hopf
algebra dual to the x-Poincaré algebra of [1,2]. Since we established that the y-Poincaré
quantum group is a left-right bicrossproduct, a first step in that direction is to verify that
the «-Poincaré algebra is a right-left bicrossproduct. This is done in the next section for
four-dimensional spacetime. To complete the duality proof, one should then prove that
the action and coaction of the y-Poincaré quantum group actually induce the coaction and
action of the x-Poincaré algebra. This is technically difficult in geperal, and for the time
being we are able to perform it only for the two-dimensional case.

5. The x-Poincaré algebra as a bicrossproduct

We explicitly construct the «-Poincaré deformed algebra of [1,2] as a left-right
bicrossproduct. A similar computation was carried out in [10], but for a right—
left bicrossproduct. This minor difference comes from our choice of the opposite
comultiplication for the x-Poincaré algebra. This choice is arbitrary at the level of the
Hopf algebra and is guided by our expressions for the y-Poincaré quantum group. It has
the inessential effect of permuting left and right in the bicrossproduct (co)-actions with
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respect to [10]. This time, the bicrossproduct combines a deformation of the algebra of
translations with the enveloping algebra U(so(3, 1)). The reduction to lower-dimensional
spacetime or to other metric signature is straightforward.

T* = B is a non-cocommutative deformation of the enveloping algebra of translations
with Hermitian generators P, (1, v =0,1,2,3and r,5,1=1,2,3)

['P.u-. Pp] - 0

APy =Po@1 + 18P,
{ (5.1)

AP, = P,@e % 1 10P,.

U(so(3,1)) = G is simply the enveloping algebra of the Lorentz Lie algebra, also with
Hermitian generators

[M:, M} = i€ M; (M, Nl =lera ¥, [N, Nil = <iepe: M. (5.2)

In the present situation as well, the definitions of the (co)-actions are guided by the final
result we want to obtain. 7™ is turned into a left I/ (so)-module algebra by the action

MpPy =0 MpP, = iErsIPt NrP‘PO =iP,

1 - : (5.3)
NeoPs = idr (5(1 —e /vy 4 ——Pz) — Z PP,
2 2r K
U{so) is a right T*-comodule coalgebra with the coaction -
(M) = M, @1
(5.4)

8(N,) = N,@e /¢ ’ice,s,Ms@m,.
These maps fulfill the conditions (B.6) and L = T*wal/ (s0(3, 1)) is a Hopf algebra. Putting
P, =Pl M =18M, N, =18N,
one easily computes the following commutation relations in L:
PuPl=0 [P, M1=0 [P, M]=iesP,
[0, M) = i, [N, N;] = —iere M, 53
B Bl =ife R, Bl = b ( -y 4 2B ) - 2B,
and the comultiplications
A(Po) =Po@1+18P . A(B) =P@e™™* + 107,
A(M) = M, @1+ 19M, (5.6)
AW,y = Nr@e Pl 1 10K, — xiemﬂmﬁ,.

The antipode follows also easily. As expected, the relations (5.5) and (5.6) are those of the
k~Poincaré Hopf algebra [1, 2], in a somewhat different basis [10].
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6. Duality in two dimensions

‘We will prove the duality of the (co)-actions in the case of the two-dimensional Minkowski
y-Poincaré quantum group. From (2.5), the restriction on the ¢’s imposes the signature
€ = ¢ = —1,6; = 1, therefore 33 = 1 = —nap. All the calculations below can be
extended to the Euclidean situation without difficulty.

In the Lorentz group, it is more convenient to describe a boost by the rapidity parameter

(6.1)

T = @) = (coshB sinh & )

sinhd coshd
and to take @ as the generator of Fun(S0(1, 1)).
The algebra T is generated by Wo, Ws constrained by the commutator [@s, #2] = iy,
and a basis of it is given by the ordered monomials w3#%; for non-negative integers n, m.
From (4.3) and (6.1), the action of 7 on Fun(SO(1, 1)} is
f<tip = iy (1 — cosh )
@<ti; = —iy sinh &
and the coaction (4.4) is
B(H2) = cosh 8@, + sinh 0Qus
B(is) = sink 8@, + cosh 6@ 3.
In T* we take the commuting generators P;, P3 with the pairing
(@315, Pa) = Gn,10m,0
= (@us, PYP]) = nlm!8y pdn 4
(ﬁgﬁ'su, PB) = n.Oam,I I
and from the %,’s commutation relation we deduce their comultiplication
A(Py) = P,@1+e7 QP
A(P) = P14+ 12°P;.
In Fun(SO(1, 1))* = U(so(1, 1)} we single out the generator N with the pairing

(6", N} =8n,.

Since Fun(S0(1, 1)) is a right T-module, U(so(1, 1)) is a right T*-comodule. The most
general coaction is

(N) = ¢pumN?QP; P .
To compute the coefficients, we use the duality relation

(@7 <y, Ny = (0°@ujuz, 5(N)} = pinlmlcp py.
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From

Plep,10 = (87 <ty, N} = (p8” iy (1 — cosh ), N) =
we deduce that

plulcpno = (8P<}, N} = ((8°<@i )@, 8(N)) = 0. 6.2)

Similarly, one easily finds that ¢, 01 = —iy 8;,1, which allows one to establish the recurrence
relation

plimlc,om = (OP<y " )@W3, S(N)) = —ip (§P<iy™ 1, N} = —~iypl(m — 1)1¢p0m—1
solved by

Cpom = -(-_%ap,l. (6.3)
The coefficients for strictly positive s, m vanish since

(0P <y, N) = (9P <)@y, S(N)) = {87 <k, N)y(@F, e VP) =0
as a consequence of (6.2) and (6.3). Therefore the coaction is

S(N) = N@e ™5, (6.4)

As T is a left Fun(S0(1, 1))-comodule T* is a left U(so(1, 1))-module, and we have
to compute

No Py = dypm Py By’
using the dua]iti;
(iziiy, NoFo) = (B(Hzu3 ), N@P,) = nimld, .
For U/ any element of T, we have from (B.1)
BUT,) = UT@,QU* + UTh, 8U%%,, ©6.5)
Therefore, using the coaction (6.4), we get
(BWE,), N®Py) = —iy8,3(8(U), NO Py} + (UTtta, NY{U®ttc, A(BS)). (6.6)
For & = 3, the second term always vanishes except when U =1 and & = 2 and we find
(BRU3), N@Ps) = (—iy)"8s,1 = nlmlds nm
which yields

NoPy = PP, 6D
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When the index # = 2, equation (6.6) reduces to
{BUR,), N®Ps) = 8,3 (—iy (BU), N@Py) + (B, 1Q¥ ™)) + 8,2({BU), N@e”Ts),
Using the pairings
(B@373), 18" ™) = (iy)"3n0
(BG5ET), N®EY D) = iyd, 13m0
we get, forn > 0
{B3u5), N@Py) = (—iy)"(iy)n1 = nlmldy o
and forn =0
(B@3), N® Py} = —iy (8@ "), NOF2) + (@)™

This last recurrence is solved by the coefficients

1 (iy)z"’"'l
daoam =0 dr0ome1 = > amt D!
and we finally get the action
1
NoPp = ” sinh(iy Ps) + P2 —irhs, (6.8)

Before making contact with the previous section, we should be careful about the
Hermitian properties of the generators N, P,. Knowing that 8,%, are Hermitian, these
are established using the definition (see [15] for example)

@iy, B = ST By (6%, N%) = 5@, &)

and we find that N, P, are actually anti-Hermitian. )
If we define the new Hermitian generators ' = iN, P, = iPe P Py = iP;,
equations (6.4), (6.7) and (6.8) become

SN =N@e?Ps

Nb"P3 =iP, (69)

i 2P iy,
ND‘Pz:E(].—e zr 3)—?172

which is clearly the reduction of the maps (5.3) and (5.4) to the two-dimensional situation,
with the substitution « = 1/y. Therefore the two-dimensional «-Poincaré algebra is the
bicrossproduct duat to the y-Poincaré quantum group.
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7. Conclusion

There are good reasons to believe that the y-Poincaré quantum group is in fact the dual to the
«-Poincaré Hopf algebra. The approach proposed here is very reminiscent of the contraction
used in deriving the «-Poincaré algebra: we start from a dual structure and the deformation
parameter g is treated in the same way. Furthermore, the bicrossproduct formulations of
these two Hopf algebras appears to be dval to each other, as the two-dimensicnal proof of
section 6 shows.

The advantage of using the bicrossproduct structure of the y-Poincaré quantum group
and algebra is that they are split into their building blocks which are easier to handle, being
simpler mathematical structures. The algebra of functions on the classical Lorentz group is
dual to the enveloping algebra of the Lorentz Lie algebra [16] and obviously T* is dual to
T. Therefore, as vector spaces, the #-Poincaré algebra and the y-Poincaré quantumn group
are dual. Showing that the algebraic structures on these spaces are dual reduces to the proof
of the (co)-actions duality.

The difficulty in generalizing the result of section 6 to higher dimensions lies mainly
in the definition of dual basis. The presentation of the bicrossproducts are simpler in the
respective bases (4.1)-(4.4} and (5.1)+(5.4), but these are very inconvenient bases when
dealing with the duality issue.
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Appendix A. The R-matrix

In order to derive the commutation relations (3.9) of the y-Poincaré quantum group by
contraction, we need to expand the R-matrix (2.1) up to second order in R. First, one has
to express it in the vy basis, using the matrix M (2.6}

o0
Ry = MOM R, MT'@M ™" = 3 " RPR™.
n==0

It is obvious that the zeroth-order term R is the identity matrix, and this explains the
simplicity of the result (3.10).
The first-order term R can be recast after some algebra in the conventional form

M
RV =y H@H +2y Y E_4®EF,. (A1)
i=1 eEA, .

In this equation, i, By, are the Cartan—Weyl generators of the Lie algebra so(V, €) in
the defining representation. Given an orthonormal basis ¢;, 1 < i < M of R¥, the positive
(long) roots Ay are ¢; +¢;,1 i < j € M, and when N is odd, the additional positive
short roots are ¢;, 1 € { € M. Putting

Ny; = —ig;e;5 + igge;
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these generators are

-EI: = G, i

Ee.te; = L(Ny + iNyj £iNiy F Ney) E, = \/_(N w4 iNpap)

&€ : . & .
E_ereepy = %(Nij — iNy; T iNiy F Nyry) E 4= -ﬁ(Nsﬂg-! — iNpau).

(A2)

For the second commutator [v},, v%,] one first remarks that due to the structure of the
matrices VO, the term [V® @ VD], |, vanishes, and the right-hand side is

RV, vO @ VP10 = RE;le)vgd - vgbvge’f\’,g,l,i.m).
From (A.1) and (A.2) one computes the relevant matrix element
R&Jc) = iy (Snpdac — €1€a0Nc0un)
and we get
[RD, VO @ Vg, 1) = —iy (@ — Swaderadac + Wy — 8ea)vf)
For the last commutator [v};, v},], the terms [V©® @ V®]gp 11y and [V @ VO] 1y

vanish. For the rest, we need the linear and quadratic terms in R, and in particular

(R(”(V._"”Vzm + VOV + vOVO 4 V;‘)Vf"’)Rm)( i (A3)
aa,

Again, due to the specific stucture of the V@ matrices, only some additional matrix
elements enter the above equation and are found to be
1 .
Rﬁa)b o = —iy (8NaBbe — €1€20NcDab)
) 1
Rieay = —vea€idic = 73?.:?,11)-
When inserted in (A.3), one gets

(ROGEVO +VOU) |, =1y Gty ~ Swavhy)

(Ad)

0 1
(VOO +VPVOR®) = —verectfevi + v,

The last contribution to (3.9¢) is
[R®, VO @ V(11 =R 11 — vocvhaReg1- (A5)
Expanding the R-matrix up to order two, one gets
R 11 = VH(—€1€0600adap — i€165P63ar + 261€a013ab).
Therefore equation (A.5) becomes (sum on ¢ only)
[R®, VO @ VOJp 11y = yPe1(t.€cb:0:0h + ithecc0evly — €abapadap — ies ppay)
= —yere(vhv), + vl 2.

In the last step, we used the first orthogonality relation (3.8) (putting j = b,k = a) in
order to simplify the expression, and one sees that it cancels with the second contribution
in (A.4), leaving the result (3.12).
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Appendix B. The bicrossproduct
In this appendix, we recall the bicrossproduct construction of Majid, setting up the notation
used in the main text, Some detailed proofs can be found in [14].

Let H, A be two Hopf algebras, where A is a right H-module algebra with the stucture

map ¢ : A®H — A,

a{a@h) = aah heH,ac A
and H is a left A-comodule coalgebra with the structure map 8 : H — AQH

B =h'®K kK ecHR cA.

On_the smash product-coproduct X = H#A (which is isomorphic to H®A as a vector
space) one can put both a structure of algebra with the multiplication rule

(h®a) - (g®b) = hgy®(a<gp)b (B.1)
and a structure of coalgebra with the comultiplication

A(h®a) = hay®h e, a1, ®he) ®ag,. (B.2)
The comultiplication is denoted by A(h) = Ay®hy. K is a bialgebra if and only if

e{a<h) = e(a)e(h) and B(l)=1®1

Ala<h) = (any<ha)he @agy<ho)’

- - = = (B.3)
B(hg) = (h'agqy)se ' ®h* 20"
by (@<hoy)@hay? = (a<hayhe @b,

These conditions arise from the compatibility of the multiplication and the comultiplication.
in K. Then K is even a Hopf algebra with the antipode

S(h®a) = (185(H) - (SEHB1).
K is called a right-left bicrossproduct and is denoted by HrA.
This structure has a dual counterpart, where left and right are exchanged. This time let
B be a left G-module algebra with the structure map y : G®B — B
v(g®@b) = gvb geG.beB
and G be a right B-comodule coalgebra with the structure map 8 : G — G®B
) =g'®g" 28 €GB
On the smash product—coproduct L = B#G the multiplication rule is

(a®h) - (b®@g) = alhy>b)Qhng (B4)
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and the comultiplication

A(BBE) = buyBgw SbwEn @8- (B.5)
L is a bialgebra iff

e(geb) = e(g)e(h) and 1) =111

Algrd) = gy ebuy®en gorba)
(B.6)

8(gh) = g(i)lhl®g(1)2(8f2)>h2)
20'®Gwrb)ga” = gay ®2m (ge»b).

Then L is a Hopf algebra with antipode

S(b®g) = 10SE) - (SEgHBD

and is called a left—right bicrossproduct denoted by Bp<G.
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