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The y-PoincarC quantum group from quantum group 
contraction 
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Massachusetts Institute of Technology, 71 Massachusetts Avenue, Cambridge, MA 02139, 
USA 

Received 14 October 1994, in find form 15 February 1995 

This paper is dedicated to the memory of my friend Ansgar Schnizer 

Absimd We propme a conmction of the de Sitter quantum group leading to a Poincar6 
quantum group in any dimensions. The method relies on the coaction of the de Sitter quantum 
group on a non-commugrive space. and the deformation p m e t e r  q is sent to one. The 
bicrossproduct structure of this ,y-Poinca16 quantum group is exhibited and shown to be dual to 
the one of the w-Poincm& Hopf algebra, at least in two dimensions. 

1. Introduction 

In the realm of Hopf algebras, several propositions for a deformed enveloping algebra of 
the D-dimensional Poincar6 algebra U,(P(D)) have been made in the recent past [ M I .  
In these approaches, the basic tool is a contraction of the deformed enveloping algebra 
U,(so(D+ I)), in which the deformation parameter q is simultaneously sent to its classical 
value one. One particular feature of these deformations is that they are minimal, in the sense 
that the commutation relations are only slightly modified, but not too minimal since they 
are no longer cocommutative. Furthermore, these deformations are physically interesting 
since they involve a dimensional parameter K which sets a scale in the theory that could in 
principle be determined by some measurement. 

In two dimensions, another contraction of Uq(su(2)), where q is left unaffected, leads 
to a different deformation of the Poincar.6 enveloping algebra [5]. This Hopf algebra turns 
out to be dual to Woronowicz’s consbuction of a P o i n d  quantum group Eq(2) [6]. 

Regarding the Poincar6 quantum group, a construction has been made in [?I, similar 
to the classical one where the Poincar6 group is the inhomogeneous group associated with 
the Lorentz group. This procedure is based on a deformation of the Lorentz group, and 
requires the inhcduction of dilatations. It was later shown to be a semidirect (co)-product 
based on a braided quantum group sbuchue [ 8 ] .  In the present y-Poincark quantum group, 
the Lorentz subgroup is classical and there are no dilatations. 

Here we are mainly interested in the dual of the K-Poincar6 algebra. Mathematically, 
these Hopf algebras are deformations based on non-semisimple Lie algebras. When the 
Lie algebra is simple, there is a natural dual Hopf algebrq conventionally known as the 
algebra of functions on the quantum group, and the R-matrix provides the elegant link 
between these dual structures [9]. At the present time, there is no known R-matrix for the 
deformed Poincari algebra (except in dimension three [I]), therefore the investigation of 
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2590 p zw 
the dual along this line is impossible. A potentially fruitful approach is to use the fact that 
the K-Poincar.6 algebra is an example of a bicrossproduct of Hopf algebras, as was recently 
shown in [lo]. 

Possible dual structures have been proposed by different authors, principally obtained 
by the quantization of the Poisson bracket on the algebra of functions on the classical 

In this paper, we first extend a previous construction [12], initially developed for a two- 
dimensional spacetime, in which a Poincark quantum group is obtained by a contraction of 
the corresponding de Sitter quantum group (sections 2 and 3). The deformation parameter 
q is sent to one as well, and simil&ly a dimensional parameter y enters the final Hopf 
algebra. From a duality point of view, this is a natural starting point since the de Sitter 
quantum group and the deformed enveloping de Sitter algebra are known to be dual. 

Next, by unravelling the y-Poincar6 quantum group bicrossproduct structure, we provide 
a strong hint that this it is actually dual to the K-Poincark algebra (sections 4 and 5). Finally 
in two dimensions, we are able to show that these bicrossproducts are precisely dual to 
each other (section 6). This provides an alternative duality proof to the one in [13]. Two 
appendices give some technical details used in the main text. 

group [3,4,I11. 

2. The Hopf algebra Fun(SOg(N, B)) 

The complex orthogonal quantum group is defined in [9] as the non-commutative algebra 
with unity and generators T = (t i j) ,  i, j = 1, . . . , N, subject to the relation R,hT. = 
T2T1Rl, where the R-matrix is 

odd 
Here + means that the term is present only for odd N .  We use the notation i' = N + 1 - i, 
the integer part M = [VI and the numbers pi, for 1 Q i Q M, 

. pi, = - pi pw+l = O  (for odd N ) .  
P i = Z - - '  

The orthogonality conditions are 

N 
TCT*C-' = C T ~ C - ' T  = n with c = Cqp'e i , i .  

i=l 

The complete Hopf algebra smcture is specified by the homomorphisms 

A(T) = T&T E ( T )  = n S(T) = C T * C - ~ .  (2.2) 

The quantum N-dimensional complex space O,"(C) is defined as the non-commutative 
algebra with unity generated by the N elements xi subject to the relation 
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and kt = PI& is the permuted R-matrix. There is a coaction of the quantum group on the 
quantum space given by 

S(X) = T b x  (2.4) 

which preserves the quadratic form x'CX. 
The quantum group real form we are considering here is specified by the anti-involution 

T' = DCTT(C-')'D-' (2.5) 

where D = diag(e1,. . . ,6~), with c,? = 1, = Er for i = 1,. . . , N ,  and ~i = 1 for i = i'. 
These E'S represent in a way the signature of the quadratic form in the quantum space, and 
characterize the real quantum algebra Fun(SO,(N, a; E&)). Similarly the quantum space is 
tumed to a quantum real space O:(R) with the help o€ the anti-involution x' = DCTx.  

For our geometric construction, it is more convenient to choose a real set of generators 
for the quantum space, zi = Mijxj = z;*, with the matrix and its inverse 

where 

1 
a N + l =  p a  = y= = S m  = - 
7 4' 

Accordingly, we take new real generators V = ( v i j )  = MTM-' for the algebra 
Fun(SO,(N, R)), which satisfy slightly different orthogonality conditions 

.--- V C V ~  = C  with ~ C = M C M ~  
V T E V  = c" with c" = M - ~ T c M - ~ .  

The comultiplication and counit are similar to (2.2), but the antipode is now 

(2.7) 

S( V )  = Fv'c": (2.8) 

In this real basis, the quantum space relations (2.3) become 
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and the quadratic form is diagonal 

In this equation, the meaning of D = diag(c1, . . . , E N )  as the signature of metric is clear, 
particularly in the l i t  4 + 1. 

3. Contraction 

We now apply the contraction procedure leading to the definition of the y-Poincar.6 quantum 
group and the quantum spacetime on which it coacts. In the classical contraction scheme, 
the ( N  - 1)-dimensional spacetime is identified with a neighbourhood of a particular point 
on the N - 1 sphere (or hyperbola if the signature is Minkowskian), in the limit of infinite 
radius. Here we  generalize this g e o m e ~ c  point of view to non-commutative spaces. The 
two-dimensional situation was developed in detail in [12], both at the classical and quantum 
level. In particular, the geometric meaning of the different steps involved was made clear. 

In the quantum space Ot(R), we consider a subspace of dimension N - 1 characterized 
by the condition zTc"z = constant (*is corresponds to the de Sitter sphere in the classical 
Euclidean contraction). This subspace is invariant under the quantum group coaction 
because the quadratic form (2.10) is invariant. On this subspace, we select a particular 
point of coordinates (zi) = (R, 0,. . . , 0) around which an expansion in R is performed. In 
the limit R + 00, this (N- 1)-dimensional subspace will give rise to the quantum spacetime, 
and by a proper limit, the coaction (2.4) will induce a coaction of the y-Poincark quantum 
group. 

We consider elements of Ot(R) living on the subspace 

Z T Z  =€,I??. (3.1) 

We absorb an irrelevant factor in RZ = 2Rz/1 + q2-N. The factor €1 is compulsory if we 
want to keep all coordinates real when R + CO, as can be easily seen from (2.10) (recall 
also that in the contraction l i t  we choosed, z1 --f 00). The contraction amounts to take 
simultaneously R + CO and q --f 1 by letting q = exp(y/R), with y a finite constant. 

In (3.1) we choose to expand z1 as a series in R (ow convention for indices is that 
i, j ,  k = 1, . . . , N ,  whereas a ,  b, c = 2, . . . , N )  

Inserting this expansion in the relations (2.9), the l i t  R + 00 is well defined because all 
the divergent terms cancel, and we are left with the unique constraint 

tz,, Z N 1 =  -iyz.. (3.3) 

We therefore define the quantum spacetime as the algebra generated by the zo subject to the 
above constraint (3.3). 
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Next, we rewrite the generators of Fun(SO,(N, a)) as an expansion in the contraction 
parameter R 

and from simple requirements we will collect enough informations on the U; to enable us 
to derive all the necessary relations characterizing the algebra Fun(Py(N - 1)). First, we 
require that under the coaction 6 of Fun(SO,(N, R)), the elements za remain of order 1 in 
the limit R + 03. Since 

6(&) = L’nl @ z1 f Uab @ Zb 

and z1 is of order R, this is only possible if ut, = 0. Next we apply 6 on both sides of (3.2) 
to get 

which implies that ufl = 
As the elements 1 and ~ 1 1  are linearly independent, we also conclude that 

and U:, @ 1+ U:, Qz. = 0, since 6 ( z i )  are finite by construction. 
= 0 and 

= 0. 
Collecting all this, we can take the R + cc limit in 6(z) = V i z ,  and dividing ZI  by 

R, thii yields 

From this form of  the coaction, we see that uil play the role of translations and ufb the 
role of Lorentz transformations. It is then natural to take the elements n, U& = Q and 
U. = uil as the generators of Fun(P,(N - l)), the algebra of functions on the quantum 
Poincart group Py(N - 1) (or, in short, the y-Poincar6 quantum group). 

Now that we selected the generators of the algebra, we should determine the constraints 
imposed on them by the previous quantum group structure. First we apply the constraints 
that derive from the contraction of the two orthogonality relations (2.7). At zeroth order in 
1/R one gets respectively 

(3.7) 

and at first order, the relations are 

(u!.evo. + ~ j ” ~ c i $ ~  + y~j”~eieipi$ + iyuj”;Eipivki.)ejk 0 

( u ~ ~ c ~ u ~  + - y+ieipiuik 0 - iyu;ejpiui,k)ejx 0 

= ycieipieii + iyeipieip 

= -yci6ipieii - iycipieii, 

18 I b 
(3.8) 

where Si = 1 if i < M and 0, = -1 if i z M. These constraints will be useful when 
computing the antipode and the commutation relations. 



2594 fJ & U 8 8  

The next task is to determine the commutation relations among the generators that 
derive from the contraction of the constraint G V I V Z  = V2V1RU. For that purpose, one 
need to expand that expression up to order R-' (in order to include the relations of u:l with 
U:,). Higher-order terms (R-", n > 3) will always contain elements U; of that order which 
by definition do not belong to the quantum Poincark algebra, and thus do not yield ,new 
constraints on our set of generators. Performing the expansion, we get for the first three. 
terms 

[v"yv"] = 0 (3.94 
[V(')$PV(O)] + [V"gPV(U] = [RW, v(0) 8 V"] (3.96) 

[V(1)?V(1)] = -[V"?V'2'] - [V(*)?V")] - [R'", v" 8 V'O)] 

(3.9.2) -R(1)(vyvp + v1 (1) v, (0) ) + ( V ,  (0) v1 (1) + v, (1) VI (0) )R (1) . 

We used the short-hand notation X = E, X@)R-" for all the matrices, and the tensored 
commutator should be understood as [ V @ ) ?  V("')](ij.u) = [vi",, U;]. 

Owing to the particular structure of V") obtained in (3.4>-(3.6), equation (3.9a) implies 
in components 

[U067 ucdl E 0 U,] 0 - 0  - . (3.10) 

From equation (3.9b). we extract the commutation relation between the order zero and 
one generators of interest, and u : ~ ,  namely we consider the component (ac, Id) of that 
equation. The necessary elements of the R-matrix are computed in appendix A, and one 
gets the commutation relations 

[U,, Ucdl = [U:,, $dl iy ( (UNd - ~Nd)cl6&c f (UcN - 8cN)U.d). (3.11) 

From equation (3.9~). we determine the commutation relation between the order one 
generators, uAl, considering the component (ab, 11). This requires the howledge of some 
particular matrix elements of R, up to order R-', which can be found in appendix A. After 
some tedious but straightforward algebra, the result is 

[ U a ,  Ubl [vO1. 1 ukll = iy@N&b --8NbUa). (3.12) 

The other components of (3.9) are not relevant since they involves elements which are not 
part of the quantum Poincar6 algebra as defined after (3.6). 

The rest of the Hopf algebra structure is obtained by contracting the comultiplication 
A ( V )  = V 6 V ,  which yields 

A(l4.b) = U,, 8 U& A(%) Ua @ 1 + Uab@Ub (3.13) 

the counit E ( V )  = ll 

6(Unb) = &b E(%) 0 

and the antipode (2.8) 

(3.14) 

(3.15) 
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One can readily check that the commutation relations (3.10H3.12) satisfy the Jacobi 
identity and as they originate from a contraction of Fun(SO,(N, R)), it is natural to take 
them as the definition of the yPoincar6 quantum group Fun(P,(N - 1)). Furthermore 
this definition is consistent with previous ones [3,4,11], obtained from quantization of a 
classical Poisson structure on the Poincad group. It is remarkable that this deformation is 
linear in the deformation parameter y .  Here this linear dependence is a direct consequence 
of the contraction, where only the lowest order terms in the expansions are kept. 

Looking closer at (3.7) and (3.10), one sees that U = (U&) actually describes an ordinary 
orthogonal matrix (with commuting entries) which preserves the metric qoe = EIE,&,,, 
i.e. equations (3.7) become UTqU = q. The introduction of the factor 61 is suggested 
by (3.1),(3.2) and is natural when considering (3.11). In particular, because of the 
constraint (2.5) imposing cl = E N ,  in our construction the time direction has always a 
positive signature I ~ N N  = 1. One should mention that for odd-dimensional spacetime, this 
also forces the metric to have an oddleven number of pluslminus signs. 

4. The y-Poincar6 quantum group as a bicrossproduct of algebra 

It turns out that the Hopf algebra Fun(P,(N - 1)) just constructed by contraction can 
also be obtained as a bicrossproduct of two Hopf algebras, whose general theory was 
developed in [14]. Essentially, a bicrossproduct is a way to build a non-commutative 
non-cocommutative Hopf algebra from two Hopf algebras, using their respective (CO)- 
actions on one another, provided some conditions are satisfied. Appendix B summarizes 
this construction. 

In our case, the two algebras that form the bicrossproduct are the algebra of functions on 
the (classical) orthogonal group Fun(SO(N - 1, R)) and a non-commutative deformation 
of the algebra of translations T. The algebra Fun(SO(N - 1, R)) = A is generated as usual 
by the commuting elements fl = @ab) (the indices a,  b, c, . . . , take their N - 1 values 
tiom 2 to N, in order to match with the notations in the previous sections) and has the Hopf 
algebra structure 

Recall that '1 = diag(qez, . . . , E I E N )  and represents the metric in RNsN-'. 

relations: 
The translation algebra T = H is generated by the elements ii, with the following 

P o ,  zb] = iY(&N& - 8bA'c.z) E @ = )  = 0 
(4.2) 

For the bicrossproduct, we must define the actions and coactions. Fun(SO) is a right 

A@=) = Z a @ l  + @Ea ~ Spa) = -&. 

T-module algebra with the structure map a : Fun(SO)@T + Fun(SO) given by 

(4.3) 

We deliberately define an action that resembles (3.11) since, from the comultiplications in 
(4.1),(4.2) and the product (B.1) in the bicrossproduct, we see that this action eventually 

- .. - 
(Y(iiob@%) E UlrbQUe = iY ( @ N b  - 6Nb)floc f @aN - 6aN)Zcb). 
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determines the commutator in K of elements of F u n ( S 0 )  and T. One then verifies that it 
is a consistent action. 

T is a left Fun(S0)-comodule coalgebra specified by the coaction p : T --f 

Fun(SO)@T 

~~ 

p @ a )  = z a b @ E b .  (4.4) 

Here again, this expression is inspired by (3.13), since from (B.2) we see that p is the key 
ingredient for defining the comultiplication in K of an element of T. One can check that 
conditions (B.3) are satisfied by the structure maps (4.3), (4.4), therefore K = T d F u n ( S 0 )  
is a Hopf algebra. If in K we denote the elements 

Uab = 1@rob U. = is.@l 

and we apply the definitions for the product of appendix B, we get the following relations 
in K: 

[Uob, ucdl = 0 

[U. ucdl = iY ((UNd - zNd)%c  + (UcN - &N)Uad) (4.5) 

[U, I u b  I = iy(aN&b - SNbUo) 

and for the comultiplication, counit and antipode 

A ( U o b )  UYS 8 Ucb A ( U a )  = U. @ 1 + Uob@Ub 

((U&) = 80, E ( & )  = 0 (4.6) 

s ( u o b )  = %cUdcqdb s(uo) = -7abUcbVcdUd. 

This shows that the bicrossproduct K is in fact the y-Poincari quantum group built in the 
previous section, Fun(Py(N - 1)) = T d F u n ( S O ( N  - 1,R)). 

Ultimately we would l i e  to show that this y-Poincari quantum group is the Hopf 
algebra dual to the K-Poincar6 algebra of [1,21. Since we established that the y-Poincmd 
quantum group is a left-right bicrossproduct, a first step in that direction is to verify that 
the K-Poincard algebra is a right-left bicrossproduct. This is done in the next section for 
four-dimensional spacetime. To complete the duality proof, one should then prove that 
the action and coaction of the y-Poincard quantum group actually induce the coaction and 
action of the K-Poincar€ algebra. This is technically difficult in general, and for the time 
being we are able to perform it only for the two-dimensional case. 

5. The K-Poincad algebra as a bicrosspmduct 

We explicitly construct the K-Poincari deformed algebra of [1,2] as a left-right 
bicrossproduct. A similar computation was carried out in [IO], but for a right- 
left bicrossproduct. This minor difference comes from our choice of the opposite 
comultiplication for the K-Poincari algebra. This choice is arbitrary at the level of the 
Hopf algebra and is guided by our expressions for the y-Poincari quantum group. It has 
the inessential effect of permuting left and right in the bicrossproduct (co)-actions with 
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respect to [lo]. This time, the bicrossproduct combines a deformation of the algebra of 
translations with the enveloping algebra U(so(3, 1)). The reduction to lower-dimensional 
spacetime or to other metric signature is straightforward. 

T' = B is a non-cocommutative defonnation of the enveloping algebra of translations 
with Hermitian generators PF &U = 0, 1,2,3 and r ,  s, t ~= 1,2,3) 

U(so(3,l)) = G is simply the enveloping algebra of the Lorentz Lie algebra, also with 
Hermitian generators 

[M,, Mal = ic,dfr [Mr ,  Nsl = ierszNt [ N r .  N,I = -isrstMl. (5.2) 

In the present situation as well, the definitions of the (co)-actions are guided by the final 
result we want to obtain. T* is turned into a  left^ U(so)-module algebra by the action 

M+Po = 0 M+P, = iGrslPl N,>P, = iP, 

U(so) is a right T*-comodule coalgebra with the coaction 

(5.3) 

(5.4) 

These maps fulfill the conditions (B.6) and L = T"WU(so(3, 1)) is a Hopf algebra. Putting 

$@ = PF@l n/i, = l @ M r  fi, = l @ N r  

one easily computes the following commutation relations in t: 

%I = o [@a, &I = o [A, &I = iG,st@r 

and the comultiplications 

The antipode follows also easily. As expected, the relations (5.5) and (5.6) are those of the 
K-Poincd Hopf algebra [I, 21, in a somewhat different basis [lo]. 
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6. Duality in two dimensions 

We will prove the duality of the (CO)-actions in the case of the two-dimensional Minkowski 
y-Poincd  quantum group. From (2.5), the restriction on the E'S imposes the signature 
€1 = €3 = - 1 , ~ z  = 1, therefore 733 = 1 = -722. All the calculations beIow can be 
extended to the Euclidean situation without difficulty. 

In the Lorentz group, it is more convenient to describe a boost by the rapidity parameter 

and to take 0 as the generator of Fun(SO(1,l)). 
The algebra T is generated by iiz, i i 3  constrained by the commutator [Ti,, E21 = iyEz 

and a basis of it is given by the ordered monomials gq for non-negative integers n,  m. 
From (4.3) and (6.1), the action of T on Fun(SO(1, 1)) is 

0aEz = iy(1 -cosh@ 

8aii3 = -iy sinhe 

and the coaction (4.4) is 

p ~ ~ )  = coshe@iiz+sinhe@E3 

p@3) = sinhO@iz + cOshO@si3. 

In T* we take. the commuting generators 4, P3 with the. pairing 

and from the Ed's commutation relation we deduce their comultiplication 

A(&) = S@l+ dyP3@Pz 

A(P3) = q @ l +  I@&.  

In Fun(SO(1, 1))' = U(so(1 , l ) )  we single out the generator N with the pairing 

(en, N) = L ~ .  
Since Fun(SO(1.1)) is a right T-module, U(so(1,l)) is a right T*-comodule. The most 
general coaction is 

S(N) = C, .~ ,N~@P,"PT.  

To compute the coefficients, we use the duality relation 

{Spagii;, N) = ( O p @ 7 + ~ ,  6 ( N ) )  = p!n!m!cp,nm. 



Similarly, one easily finds that cp.o I = -iySp.,, which allows one to establish the recurrence 
relation 

p!m!cp,om = ((eP-=q1)@z3, s(N))  = -iy(op-z;-l, N )  = -. w ! ( m  - I ) ! C ~ , O ~ - I  

solved by 

The coefficients for strictly positive n, m vaiish since 

{ e p - q i y ,  N )  = ( ( e p = z p 8 q ,  s(N)) = {e"&;, N)@?, e-i!'p3) = o 
as a consequence of (6.2) and (6.3). Therefore the coaction is 

S ( N )  = N@e-iYP3. (6.4) 

As T is a left Fun(SO(1, I))-comodule, T* is a left U(so(1, 1))-module, and we have 
to compute 

NDP. = PJ P? 

using the duality 

cli;iy, NDP,) = {fi(ii;Fy), N@P,) = n!m!Q,,. 

For U any element of T*,  we have from (B.l) 

fi(u?i,) = UiQza@uT+ uiz&uT&l (6.5) 

Therefore, using the coaction (6.4), we get 

@(U&), N@Pb) = -iY&,dfi(U), + (U'Uac. N)(u%Uc3 A(pb)). (6.6) 

For b = 3, the second term always vanishes except when U = 1 and a = 2 and we find 

(p,?i;ii?), Ne&) = (-iy)'"S,,l = i ~ ! m ! d 3 , ~ ,  

which yields 

N B P ~  = pZe-'Yp'. (6.7) 



and we finally get the action 

(6.8) 

Before making contact with the previous section, we should be careful about the 
Hermitian properties of the generators N, Pa. Knowing that B,ii., are Hermitian, these 
are established using the definition (see 1151 for example) 

N D P ~  = I- 1 . .  sinh(iyP3) + -Pze iy 2 -iyP$, 
1Y 2 

and we find that N ,  Pa are actually anti-Hemitian. 

equations (6.4), (6.7)-and (6.8) W o m e  
If we define the new Hemitian generators N = iN,'P2 = iP~e-~!"~,P3 = iP3, 

&(N) = N@e-Yp3 

which is clearly the reduction of the maps (5.3) and (5.4) to the two-dimensional situation, 
with the substitution K = l / y .  Therefore the two-dimensional K-Poincar6 algebra is the 
bicrossproduct dual to the y-Poincar6 quantum group. 
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7. Conelusion 

There are good reasons to believe that the y-Poincark quantum group is in fact the dual to the 
x-Poincar6 Hopf algebra. The approach proposed here is very reminiscent of the contraction 
used in deriving the K-Poincar.5 algebra: we start from a dual shucture and the deformation 
parameter q is treated in the same way. Furthermore, the bicrossproduct formulations of 
these two Hopf algebras appears to be dual to each other, as the two-dimensional proof of 
section 6 shows. 

The advantage of using the bicrossproduct structure of the y-Poincar.4 quantum group 
and algebra is that they are split into thek building blocks which are easier to handle, being 
simpler mathematical slructures. The algebra of functions on the classical Lorentz group is 
dual to the enveloping algebra of the Lorentz Lie algebra [16] and obviously T* is dual to 
T. Therefore, as vector spaces, the K-Poincar6 algebra and the y-Poincar6 quantum group 
are dual. Showing that the algebraic structures on these spaces are dual reduces to the proof 
of the (CO)-actions duality. 

The difficulty in generalizing the result of section 6 to higher dimensions lies mainly 
in the definition of dual basis. The presentation of the bicrossproducts are simpler in the 
respective bases (4.lH4.4) and (5.1H5.4), but these are very inconvenient bases when 
dealing with the duality issue. 
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Appendix A. The R-matrix 

In order to derive the commutation relations (3.9) of the y-Poincar6 quantum group by 
contraction, we need to expand the R-matrix (2.1) up to second order in R. First, one has 
to express it in the vij basis, using the matrix M (2.6) 

It is obvious that the zeroth-order term Eto) is the identity matrix, and this explains the 
simplicity of the result (3.10). 

The first-order term R$” can be recast after some algebra in the conventional form 

In this equation, Hi, E h  are the CartawWeyl generators of the Lie algebra so(N, E )  in 
the defining representation. Given an orthonormal basis ei, 1 < i 4 M of BM, the positive 
(long) roots A+ are ei f e j ,  1 < i < j < M ,  and when N is odd, the additional positive 
short roots are el, 1 < i < M. Putting 

N.. --ic.e,.+is,e.. 
1J - I 1J I /I 
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these generators are 

Hj = ~jNjjt 

(-4.2) 
R I + i N i , y )  

E - ,  - - ( N q  - iN icF) .  

1 
Ee; = z ( N i +  Eej*ej = f(Nj + iNpj 5 iNij, r Ni,,,) 

E ' € .  a 
E++.j) = "(N.. - iNi, 'F iNi, F NicY) 

2 U *--  Jz 
For the second commutator [&, u d ]  one first remarks that due to the structure of the 

matrices V(O.I), the term [V(O)? v(l)](,,c~ld) vanishes, and the right-hand side is 
0 0 R"' [R'", V(O) @ v(o)](ac,ld) = R{LL,lb)utd - v&v,, (be,ld), 

From (A.l) and (A.2) one computes the relevant matrix element 
R'" 

(,+,le) = iY(GNb&zc - ElEo8Ndob) 

and we get 

[Res, vCo) @ v(o)l(m?,ld) = -iY ( ( u i d  - 8Nd)El%&c + (U$, - 8cN)utd) . 
For the last commutator [U:,, U;,], the terms [V(o)?v(2)](~b.i i)  and [v")? v(o)l(ab.ii) 

vanish. For the rest, we need the linear and quadratic terms in R, and in particular 

(R(l)(v:O)v(l) 2 + V(l)V?)) 1 + (V* (0) v, (1) + v, 'l'V(0) 1 ) R'l' ),b,,,). (A.3) 

Again, due to the specific structure of the V(O.l) matrices, only some additional matrix 
elements enter the above equation and are found to be 

p 

~{;2,11) = -Yeleisic = R(cj,ii). 

(&,cl) = -k '(~Ndbc - ElG8NcJob) 

(1) 

When inserted in (A.3). one gets 
( R ( l ) ( v p p  + v y )  (0) 1 

((V* (0) v, (1) + V,"VV:O~)R~") 

v 2  )) =iY(8h'buil -8Naubl) 
(ab.ll) 

(A.4) 
= - ~ E , E e ( u ~ c u ~ ~ +  u;,lJ~,). 

(ob.ll) 

The last contribution to (3 .9~)  is 

[R'", V(O) @ v(o)](ob,ll) = R ~ , J I  - ufCutdR$,1l. 64.5) 
Expanding the R-matrix up to order two, one gets 

(2) - 2( 'R,,,J, - y -6 ldeaPn8ob - i€16bPb8ab'+ 261€aPl&b). 

Therefore equation (AS) becomes (sum on c only) 

[Re). V(O) @ v(o)](ab,ll) = Y261($%&PcU~c f i&cPcU:& - ca0oPcz8ab - iEbPb8ob') 

= -YEI€c(u:cU:c + u ; , 6 , .  

In the last step, we used the first orthogonality relation (3.8) (putting j = b, k = a)  in 
order to simplify the expression, and one sees that it cancels with the second contribution 
in (A.4). leaving the result (3.12). 
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Appendix B. The bicrossproduct 

In this appendix, we recall the bicrossproduct construction of Majid, setting up the notation 
used in the main text. Some detailed proofs can be found in [14]. 

Let H, A be two Hopf algebras, where A is a right H-module algebra with the structure 
map LY : AOH -+ A ,  

or(aOh) = aah h E H ,  a E A 

and H is a left A-comodule coalgebra with the structure map ,4 : H -+ A @ H  

p(h) =hi@ h' h ,  hT E H ,  hi E A. 

On the smash product-coproduct K = H#A (which is isomorphic to H O A  as a vector 
space) one can put both a structure of algebra with the multiplication rule 

@On) . (g@b) = hg(i)O(a-%(z))b (B.1) 

and a structure of coalgebra with the comultiplication 

A (h@a) = h(i) @h (z)'a(i)Oh<z)%W(z). (B.2) 

The comultiplication is denoted by A(h) = h@h(z). K is a bialgebra if and only if 

c(a4h) = e(a)€(h) and p(1) = 1O1 

These conditions arise from the compatibility of the multiplication and the comultiplication 
in K .  Then K is even a Hopf algebra with the antipode 

S(h@a) = (lOS(hia)) (S(hT)@l). 

K is called a right-left bicrossproduct and is denoted by X W A .  

B be a left G-module algebra with the structure map y : G@B -+ B 
This structure has a dual counterpart, where left and right are exchanged. This time let 

y(gOb) = gcb g E G, b E B 

and G be a right B-comodule coalgebra with the structure map 8 : G --f G@B 

8 ( g )  = g i  Q gT g,g i  E G,gZE B .  

On the smash product-coproduct L = B#G the multiplication rule is 

(a@h) . @8g) = a(h(i)bb)@h(z)g (B.4) 
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